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Abstract: In today’s world, smart buildings are considered an overarching system that automates a
building’s complex operations and increases security while reducing environmental impact. One of
the primary goals of building management systems is to promote sustainable and efficient use of
energy, requiring coherent task management and execution of control commands for actuators. This
paper proposes a predictive-learning framework based on contextual feature selection and optimal
actuator control mechanism for minimizing energy consumption in smart buildings. We aim to assess
multiple parameters and select the most relevant contextual features that would optimize energy
consumption. We have implemented an artificial neural network-based particle swarm optimization
(ANN-PSO) algorithm for predictive learning to train the framework on feature importance. Based
on the relevance of attributes, our model was also capable of re-adding features. The extracted
features are then applied as input parameters for the training of long short-term memory (LSTM)
and optimal control module. We have proposed an objective function using a velocity boost-particle
swarm optimization (VB-PSO) algorithm that reduces energy cost for optimal control. We then
generated and defined the control tasks based on the fuzzy rule set and optimal values obtained from
VB-PSO. We compared our model’s performance with and without feature selection using the root
mean square error (RMSE) metric in the evaluation section. This paper also presents how optimal
control can reduce energy cost and improve performance resulting from lesser learning cycles and
decreased error rates.

Keywords: actuator control; energy prediction; context-aware; feature selection; sensing; actuator
control; smart buildings

1. Introduction

In recent years, household consumption of energy has drastically increased due to the
rapid growth rate observed in the world’s population. With the increase in population,
houses have also expanded, and the use of appliances has become more common. House-
hold appliances such as air conditioners, heaters, refrigerators, washing machines, stoves,
etc., all operate on energy. Early prediction of a household’s energy usage can help in better
managing of the energy needs and planning to save energy where possible. Hence, pre-
dicting electricity demand is crucial, as it plays a pivotal role in utility power planning [1].
Effective and accurate energy consumption models cannot be overemphasized and are one
of the major challenges [2,3].

A context-aware energy prediction mechanism is one where roles of all the sensing
values from the environment surroundings are carefully observed. For example, in a smart
home’s energy consumption prediction problem, the context can include the smart home
appliances’ power consumption, weather conditions, users’ activities, time of the day,
day of the week, workday or holiday, special events, etc. A prediction mechanism must
consider the surroundings of the given environment and the fact that the surrounding
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relevance is also variable. Another major concern while implementing a prediction model
is selecting the most appropriate features.

Feature selection is one of the most important steps in prediction problems. The
process of feature selection can be defined as finding the smallest subset that shows the
strongest effect on the prediction accuracy and minimizes the model’s complexity. Finding
the most related input features is essential. To select the right features, one must have
detailed and in-depth knowledge of the area. Still, manual feature selection is a very
tedious task, and even experts in a field can make mistakes. The accuracy of the prediction
model greatly depends on the quality of data and the relevancy of features. For example,
in case of energy prediction, if the given features in a dataset have no strong relation to
the increase or decrease in the energy consumption, then there are high chances that the
model performance will turn out to be poor. A prediction model, which is enabled to
learn feature importance on its own, with the passage of time, can be of huge benefit to
prediction problem applications.

In this work, we focused on the use of a long short-term memory (LSTM) algorithm
in prediction models. LSTM is a type of recurrent neural network (RNN). It is a time-
series forecasting algorithm [4]. LSTM networks are considered one of the most suitable
prediction algorithms for time series data. In recent years, many researchers have focused
on proposing prediction algorithms using the efficacy of LSTMs. Xiangyun et al. propose
an hourly day-ahead solar irradiance prediction algorithm, using LSTMs, for minimizing
energy costs [5]. An energy consumption prediction mechanism for smart homes based on
a hybrid LSTM network is proposed by Ke et al. [6]. The hybrid approach increases the
data dimensions and eventually results in increased prediction accuracy.

In this work, we present a predictive learning-based optimal actual control mechanism
for smart homes. The proposed mechanism includes a prediction learning module that uses
LSTM to make energy consumption predictions. The prediction module takes all available
features at the first cycle of learning and works its way down to learn the most impactful
features. The prediction model also learns to re-add features based on the relevance of
history learned at a given prediction time. The predicted values are then passed onto the
optimization module, where optimal parameters are set accordingly. Optimal parameters
are then used to generate actuator control commands.

The rest of the paper is divided as follows: Section 2 presents the related works;
Section 3 presents the proposed prediction mechanism. In Section 4, we provide the task
modeling simulation of the proposed system. Results analysis is presented in Section 5;
Section 7 concludes the paper with discussions.

2. Related Work

Energy consumption prediction is one of the significant prediction problems, and
many recent researchers have proposed solutions for energy prediction based on deep
learning, such as load forecast-based on pinball loss guided LSTM [7], energy use prediction
for solar-assisted water heating system [8], and short-term residential load forecasting
using LSTM recurrent neural network [9,10]. An LSTM-based periodicity energy usage
of a cooling system is analyzed in [11]. According to this study, the computation cost can
be reduced by using lower dimensional variables. A hybrid LSTM-based approach that
integrated data pretreatment strategy, deep learning method, and advanced optimization
method, is introduced in [12]. It is referred as a short-term energy load forecast system
known as VMD-BEGA-LSTM (VLG), integrating a data pretreatment strategy, advanced
optimization technique, and deep learning structure, is developed in this paper.

LSTMs have been widely used in contextual recommendation systems. A context-
aware location recommendation system is proposed by Wafa et al. The authors propose a
hierarchical LSTM model. The two-level hierarchy model predicts the location of interest
at the first level and considers the contextual information related to predicted location at
the second level [13].
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Yirui et al. propose a context-aware attention LSTM network model for flood predic-
tion. The authors focus on predicting sequential flow rates based on flood factors. Their
proposal aims to remove the irrelevant flood factors data to avoid noise and emphasize
on the informative factors only. Their proposed model learns the probability distribu-
tions between flow rate and hidden output of each LSTM during training and assigns the
weights accordingly during testing [14]. The installment of IoT sensors in smart building
enables action recognition and hence, it leads to real-time monitoring, control, and savings
of energy. A context-aware load supply mechanism based on IoT and deep learning is
presented. The context-aware network is built on classroom video and action recognition
data is extracted to extract contexts [15]. Joshua et al. present a hot water energy demand
prediction for saving energy using convolutional neural networks (CNNs). They make the
use of contextual data such hour, day, week, etc., to extract contextual information [16].

Jeong et al. present a context-aware LSTM for event time series prediction. Their
proposed model is based on hidden Markov model (HMM) and LSTM. HMM is used to
abstract the past data for distant information of context [17]. Maria et al. make an effort
to cover two properties of non-intrusive load monitoring, non-causality and adaptivity
to contextual factors, via application of bidirectional LSTM model. The authors develop
a self-training-based adaptive mechanism to address scaling issues with the increase in
smart home appliances [18]. Another scalable and non-intrusive load monitoring approach
is presented by Kunjin et al. A convolutional neural network (CNN)-based model is
proposed for building a multi-branch architecture, with an aim to improve prediction
accuracies [19]. Tae et al. present a CNN-LSTM-based hybrid mechanism for household
power consumption prediction [20]. Yan et al. present a CNN-LSTM-based integrated
energy prediction approach for Chinese energy structure. In order to verify the results,
the authors compared their proposal results with six methods such as ARIMA, KGM,
SVM, PBNN, LSTM, and CNN [21]. Many recent works have proposed hybrid of popular
prediction algorithms to present a more robust solution [22–26].

Many recent studies have focused on the context-aware load prediction solutions.
The existing solution of context-aware predictions can be widely categorized into two
types: context feature extraction in pre-processing and context features weights assignment
during learning. Based on our related works’ study, we observed that a major difference
in the prediction results might occur; if past predictions’ context is recorded, and feature
learning is performed before weighing the features during training process. A summary of
context-aware prediction solutions is presented in Table 1.

Table 1. Summary of context-aware prediction solutions.

Ref. Feature Extraction in
Pre-Processing

Feature Extraction During
Prediction Learning

Feature Learning Through
Prediction Learning Phases

[13]
√

- -
[14]

√ √
-

[15]
√ √

-
[16]

√ √
-

[17]
√ √

-
[18]

√ √
-

[19]
√ √

-
[20]

√
- -

[21]
√

- -
Proposed Approach

√ √ √

Feature learning and selection based on feature importance is also very crucial when it
comes to learning contexts and updating model accordingly. In [27], an integrated feature
learning technique is proposed for predicting travel time by using deep learning. To
increase the learnability of features, different feature enriching algorithms are applied.
In [28], the focus is on selecting effective features through a strategy that minimizes the
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redundancy and maximizes the relevancy of features. The study analyzes the influence of
selecting effective features on load consumption of building. In another study [29], deep
learning and Bat algorithms are used for optimizing energy consumption and for user
preference-based feature selection. A hybrid approach [30] that is integrated with feature
selection method aims to automatically detect the features based on higher relevance for
multi-step prediction. In [31], two main tasks are performed: first, a method is proposed to
transform the time-dependent data for machine learning algorithms and secondly, different
kind of feature selection tasks are applied for regression tasks.

A similar sort of model is presented in [32], that is developed by using layered
structures and meta-features. In [33], a neuro-fuzzy inference system is proposed that is
being boosted with an optimizer. It also introduced a new non-working time adaptation
layer. In [34], an LSTM-based model with various configurations is built to forecast energy
consumption. It uses wrapper and embedded feature selection techniques along with
genetic algorithm (GA) to find optimal configuration of LSTM for prediction learning.

Prediction learning models are updated periodically, due to updates in history data.
Hence, it is wise to record additional results from previous test results and use the data
to benefit the system in next training cycles. In this work, we propose a feature learning
solution that aims to improve the prediction accuracies by filtering the contextual data
based on history learnings.

3. Proposed Prediction Mechanism

This section presents a feature learning-based adaptive LSTM approach for energy
predictions in smart environments. Our proposed prediction model takes all available
features at the first cycle and works its way down to learn the most impactful features.
The proposed model also learns to re-add features based on relevance with a change in
attributes involved and time. Hence, we can call the proposed model to be adaptive in
nature.

In Figure 1, we present the proposed prediction model, where an LSTM algorithm is
used for making predictions. The proposed model has a feature learning module integrated
with LSTM predictions in a cyclic manner. After every cycle of LSTM prediction, the outputs
are passed onto the feature learning module, where features are tuned, and then updated
features are passed onto the next cycle of predictions.

3.1. LSTM Architecture

LSTM is a type of RNN (recurrent neural network) where prediction is performed by
backpropagation. The output of a neural network layer is backpropagated at time “t” to
the input of the same network layer at time ‘t + 1’.

LSTM contains memory blocks that are connected through layers. A block contains
three gates that enable the block to maintain its states and output. The three gates included
in an LSTM block are a forget gate, an input gate, and an output gate. The forget gate
conditionally decides which information can be ignored and which information is impor-
tant to be remembered. The input gate decides what values from input should be used to
update the state. The output gate decides what should be the output based on the block’s
current input and state memory.

In equations flow below, we present the operations performed at forget gate, input
gate, and output gate. The terms used are described in Table 2.
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Table 2. Description of terms used at long short-term memory (LSTM) gate operations.

Terms Description

σ sigmoid function
tan h tanh function

t Time step
ft Forget gate at t
xt Input at t

ht−1 Previous hidden state
W f Weight matrix between forget gate and input gate
b f Connection bias at forget gate
it Input gate at t

Wi Weight matrix of sigmoid operator between input gate and output gate
bi Bias vector at input gate
Ct Value generated by tanh operator

Wc
Weight matrix of tanh operator between cell state information and network

output
bc Bias vector at t for weight matrix Wc
Ct Cell state information

Ct−1 Previous time step cell state information
ot Output gate at t

Wo Weight matrix of output gate
bo Bias vector for Wo
ht LSTM output

Equation (1) shows the operation of forget gate which decides what elements of the
previous cell state (Ct−1) are to be forgotten.

ft = σ
(

W f [ht−1, xt] + b f

)
(1)
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Next, Equation (2) shows that which values is to be updated at input gate.

it = σ(Wi[ht−1, xt] + bi) (2)

Then a potential vector of cell state is computed by the current input (xt) and the last
hidden state ht−1.

Ct = tan h(Wc[ht−1, xt] + bc) (3)

After that, we can update the old cell state Ct−1 into the new cell state Ct by element-
wise multiplication as shown in Equation (4) below.

Ct = ft ∗ Ct−1 + it ∗ Ct (4)

The output gate decides which elements to output by a sigmoid layer (Equation (5)).

ot = σ(Wo[ht−1, xt] + bo) (5)

The new hidden state ht of LSTM is then calculated by combining Equations (4)
and (5).

ht = ot ∗ tan h(Ct) (6)

In Figure 2 below, we show the block structure of LSTM including forget gate, input
gate, and output gate.
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3.2. Feature Learning

In this subsection, we present the feature learning method. The training and testing
process using the LSTM algorithm is performed in cycles.

All features’ relevance data is added to feature relevance history data. This history
data is built by reiterating training and testing cycles, with feature deductions, shuffling,
and reset. The aim of maintaining history log for feature relevance score is to make the
system capable of learning from features relevance context based on time of predictions.
The feature history data is updated with each cycle by adding prediction results attributes
such as time of the day, day of the week, workday/holiday, and all features relevance score.

We have used an artificial neural network (ANN) algorithm for learning feature
relevance, and we have used PSO algorithm to optimize the weights. PSO takes weights
from ANN at each iteration, and PSO populations work towards finding optimal weights.
The tuned weights are passed back to ANN. The optimization of ANN weights with PSO
aims to reduce learning time and improve learning rates (Figure 3).
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3.3. Meta-Parameters

This section presents some meta-parameters used during various processes and meth-
ods, such as different thresholds. These meta-parameters are set after multiple experiments,
and the most optimal values are used. Other meta-parameters include total processing
capacity, layers in ANN, PSO’s inertia velocity boost threshold, and PSO’s regeneration
threshold. These thresholds are also used to examine the particle’s performance in PSO.
Table 3 presents the optimal values of different meta-parameters after multiple experiments,
as shown in [35]. In different applications, users may have to tinker with these values to
fine-tune their results.

Table 3. Meta-parameters.

Meta-Parameters Optimal Values

Total Processing Capacity 95% of CPU available
ANN layers 6

PSO inertia velocity boost threshold 11
PSO re-generation threshold 25

After the first cycle of LSTM training and testing, each feature’s prediction scores, and
relevance score are extracted. A relevance threshold is set, and a relevance score below
the threshold is considered unacceptable. After the first cycle, the least relevant feature is
removed, and the next cycle of prediction is performed with updated input data. From
the second iterations onwards, the system first validates the prediction performance after
removal of the last least relevant feature. If prediction performance is improved or no
change is observed, then validation is set to true. Otherwise, if prediction performance
deteriorates after feature removal, then validation is set to false. When validation is true,
the relevance score for all existing features is extracted, and the feature with the least
relevance is removed. When validation is false, the last removed feature is added back,
and a positive weight is added to its relevance history data (Figure 4).
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After the removal or addition of features based on validation results, the history data
learning results are extracted. Features with high relevance score based on learnings from
history data are matched to be present in the data, and features with relevance below than
a set threshold are removed.

3.4. Predictive Learning-Based Optimal Control Mechanism

In this section, we present the predictive learning-based control mechanism for smart
home actuators’ control commands generation and scheduling the control commands. We
upgrade the optimal control scheduling mechanisms from one of our recently published
works [36] and transform it into a predictive learning-based optimal control mechanism
to improve the architecture design and performance. In [36], we defined the optimization
objective function based on user-defined parameters. In this proposal, the optimization
function achieves the optimal values based on the demand forecasting from the predic-
tion module instead of user-defined parameters (Figure 5). This enables the optimization
objective function to be adaptive based on history learnings and makes the function less de-
pendent on the user inputs. It will learn the user preferences based on prediction learnings.
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First, the prediction module outputs the temperature, humidity, and illumination
demand for the current timestamp. The predicted values are passed as input to the
optimization module along with current parameters. The notations description for the
optimization objective function is given in Table 4.

Table 4. Objective function notations description.

Notations Description

TPredicted Predicted temperature energy demand values
HPredicted Predicted humidity energy demand values
IPredicted Predicted illumination energy demand values

TC Temperature reading at the current hour
HC Humidity reading at the current hour
I Illumination reading at the current hour

TDD Temperature demand difference calculated between predicted and current
HDD Humidity demand difference calculated between predicted and current
IDD Illumination demand difference calculated between predicted and current
EcostT Per unit energy consumption cost for temperature
EcostH Per unit energy consumption cost for humidity
EcostI Per unit energy consumption cost for illumination
ECSO Optimal energy consumption savings

TO Optimal temperature
HO Optimal Humidity
IO Optimal Illumination
EO Optimal energy consumption

The equations flow given below, defines the optimization objective function for the
three input parameters of temperature, humidity and illumination. The predicted tem-
perature demand (TPredicted), predicted humidity demand (HPredicted) and predicted illu-
mination demand (IPredicted) values are taken as input from prediction module. Demand
difference values for temperature (TDD), humidity (HDD), and illumination (IDD) are
calculated by calculating the difference between the predicted values and the current values
(Equations (7)–(9)). Next, energy demand difference cost is calculated (Equation (10)). En-
ergy savings are calculated by running the optimization algorithm solution and finding the
optimal parameters with minimized energy cost based on demand and current parameters
(Equations (11) and (12)). Once the optimal parameters are found, the optimal energy can
be calculated as given in Equation (13).

TDD = |TPredicted − TC| (7)

HDD = |HPredicted − HC| (8)

IDD = |IPredicted − IC| (9)

EDDCOST = (TDDCOST ∗ EcostT ) + (HDDCOST ∗ EcostT ) + (IDDCOST ∗ EcostI ) (10)

ECSO = [ECT + ECH + ECI ]− EDDCOST (11)

ECSO = [ECT + ECH + ECI ]− [(|TPredicted − TO| ∗ EcostT )
+(|HPredicted − HO| ∗ Ecos tH ) + (|IPredicted − IO| ∗ Ecos tI )]

(12)

EO = (TO ∗ EcostT ) + (HO ∗ EcostH ) + (IO ∗ EcostI ) (13)

Once the optimal values are found, the optimal values are then used to derive fuzzy
rules set to trigger the control commands based on input parameters to the fuzzy module.
Table 5 explains the actuator actions constraints based on which fuzzy control module
generates the control rules for each actuator action. The control commands generated from
the fuzzy control module are then used to model control tasks which are to be executed
at the scheduler for control tasks’ operation (Figure 6). We have used our previously
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implemented fuzzy control and scheduling module [36] and made changes to fit our
current scenarios.

Table 5. Actuator actions constraints for defining fuzzy control rules.

Data Attribute Description

Heating Tc < Tmin ≤ To ≤ Tmax
Chilling Tmin ≤ To ≤ Tmax < Tc

Humidification Hc < Hmin ≤ Ho ≤ Hmax
Dehumidification Hmin ≤ Ho ≤ Hmax < Hc
Light-Brightness Ic < Imin ≤ Io ≤ Imax
Light-Darkness I ≤ Io ≤ Imax < Ic
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4. Dataset and Data Preprocessing

We have used dataset of energy consumption and related weather data [37]. The
set contains timestamp, energy consumption, and weather conditions. The detailed data
attributes are shown in Table 6.

Table 6. Description of terms used at LSTM gate operations.

No. Data Attribute Description

1 Timestamp Hourly timestamp including year, month, day, hour for the readings
2 Energy Energy consumption readings at the current hour
3 Conditions Weather conditions such as rain or clear, fog, mist, partly cloudy, cloudy
4 Dew PointC Dew point reading at the current hour
5 Gust speed Gust speed reading at the current hour
6 Humidity Humidity reading at the current hour
7 Temperature Temperature speed reading at the current hour
8 Precipitation mm Precipitation reading at the current hour
9 Sea Level Pressure Sea level pressure reading at the current hour

10 Visibility Km Visibility in kilometers at the current hour
11 Wind Speed Km/h Speed of wind in kilometer per hour at the current hour
12 Wind Direction Direction of wind at the current hour
13 WindDirDegrees Degrees of wind direction at the current hour
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Now, we present the data preprocessing steps as shown in Figure 7. History data was
taken as input to model data. Data was analyzed using two data analysis techniques of
visual assessment and programmatic assessment. Based on data analysis, the next step was
to clean data. To tune the data format, we convert the timestamp data type to date time.
Next, we resampled the weather data, as data should be resampled before merging energy
data and weather data. In the last step, the data to be passed to the prediction module
was normalized.
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5. Implementation Setup

In this section, we present the implementation setup in detail. The core programming
logic was implemented using Python 3.8.1. Python is a very popular general-purpose pro-
gramming language; it is widely used for developing desktop and web-based applications.
The implementation is mainly done on Jubyter Lab IDE (Integrated Development Envi-
ronment) since, Jupyter lab provides ease of implementation, better results visualization,
and high-level features to adapt to processing needs. The additional details of system
configuration are presented in Table 7.

Table 7. Implementation environment.

Components Specifications

Operating System Windows 10 Professional Edition
Processor Intel i5 9th Generation

Memory (RAM) 16 GB
Programming Language Python 3.8.1

IDE Jupyter (Conda 4.9.1)

6. Performance Analysis

In this section, first, we present the analysis of the results of predictions using multi-
variate LSTM algorithm with self-selected features. Then, we present the results analysis of
predictions using multivariate LSTM algorithm with feature learning.

We use root mean square error (RMSE) measure as a performance metric to compare
prediction performance. RMSE is the standard deviation of the residuals (prediction errors),
where residuals are a measure of how far from the regression line data points are. In other
words, it tells you how concentrated the data is around the line of best fit.
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6.1. PredictionMechanism without Feature Learning

In this subsection, we perform predictions using self-selected contextual features.
During the visual assessment and programmatic assessment, we observed the available
features in the dataset. We studied the trends of each feature’s data values over the period
of year through different seasons. After carefully studying data trends, we decided to drop
the features that seemed irrelevant to the data. Initially, we had 11 contextual features
of temperature, humidity, dew point, conditions, gust speed, precipitation mm, sea level
pressure, visibility km, wind speed km/h, wind direction, and wind direction degrees.
After dropping irrelevant features, we were left with eight contextual features: temperature,
humidity, dew point, precipitation mm, sea level pressure, visibility km, wind speed km/h,
and wind direction degrees. We further ranked eight contextual features into most to least
relevant based on our data trends study and analysis. The ranking in descending order
was as following: temperature, humidity, dew point, precipitation mm, visibility km, wind
speed, sea level pressure, and wind direction degrees (Table 8).

Table 8. Datasets based on contextual feature ranking.

Data Columns

Dataset 1 1 Contextual Feature Timestamp | Energy | Temperature
Dataset 2 2 Contextual Features Timestamp | Energy | Temperature |Humidity
Dataset 3 3 Contextual Features Timestamp | Energy | Temperature |Humidity |Dew PointC
Dataset 4 4 Contextual Features Timestamp | Energy | Temperature |Humidity |Dew PointC| Precipitation mm

Dataset 5 5 Contextual Features Timestamp | Energy | Temperature |Humidity |Dew PointC| Precipitation mm
| Visibility km

Dataset 6 6 Contextual Features Timestamp | Energy | Temperature |Humidity |Dew PointC| Precipitation mm
| Visibility km |Wind Speed

Dataset 7 7 Contextual Features Timestamp | Energy | Temperature |Humidity |Dew PointC| Precipitation mm
| Visibility km |Wind Speed | Sea Level Pressure

Dataset 8 8 Contextual Features Timestamp | Energy | Temperature |Humidity |Dew PointC| Precipitation mm
| Visibility km |Wind Speed | Sea Level Pressure | WindDirDegrees

Figure 8 shows the weekly prediction results of all eight datasets. We can observe
from the results that performance deviation does not necessarily align with our feature
selection order. Though in some cases, removal of an irrelevant contextual feature (based
on self-ranking) has shown improvement in the prediction performance such as from
Dataset 8 to Dataset 7, but right in the next removal, from Dataset 7 to 6, the performance
was badly affected as well. Similarly, a mixed effect on the prediction performance was
observed for training and testing using Dataset 6 until Dataset 1.

The average RMSE values for each dataset with a varying number of contextual
features are given in Figure 9. Our ranking of contextual features still proved to be
relevant as best prediction performance observed with Dataset 2 containing two top-
ranked contextual features. Still, the best prediction performance in this scenario had
considerable deviations of predicted values from the actual values. Unless we derived
datasets of all the contextual features’ combinations and trained and tested our prediction
model with all datasets, we cannot be sure that the achieved results with the given Dataset
2 were the best results possible. Such regressive training with all the combinations of
features still seems a doable task for datasets with fewer features; but as the number of
features increases, it becomes very costly to train and test for all the possible combinations
to find the best prediction results. Hence, in the next section, we observe the prediction
results based on feature learning.
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6.2. Prediction Mechanism with Feature Learning

In this subsection, we observe the prediction performance for multivariate LSTM
algorithm with feature learning.

The model starts training with the entire dataset containing timestamp, energy, and
11 contextual features such as temperature, humidity, dew point, conditions, gust speed,
precipitation mm, sea level pressure, visibility km, wind speed km/h, wind direction, and
wind direction degrees. The model calculates feature relevance and learns feature relevance
score based on features’ history relevance after each cycle. An updated set of features is
used for predictions in the next cycle. Figure 10 shows the prediction result plotting of
predicted energy values against actual energy values. We can observe that deviations in the
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predicted results do not seem to be very high as compared to the previous best-achieved
results with Dataset 2 in Section 6.1., 8, x FOR PEER REVIEW 14 of 18 
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Figure 11 shows the RMSE score for the prediction results for LSTM with feature
learning. The feature learning module updates the dataset based on calculated feature
relevance. These prediction results were obtained after four cycles of LSTM algorithm
training with feature learning adaptations. The average RMSE obtained was 4.70. We could
observe that feature learning learns the most relevant feature very quickly, and also, the
error between predicted values in contrast to actual values was reduced drastically.
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If we consider finding the best combination of features without the feature learning
approach, then we have to check for all the possible combinations of features. If we consider
our scenario of 11 contextual features, then the possible number of contextual features’
combinations will be 2047. If we consider the self-selected contextual features, then the
possible number of contextual features’ combinations will be 255. Even in the case of eight
contextual features, the total number of training cycles to find the best possible prediction
results will be costly at processing powers and more time-consuming. In the table below,
we present the comparison analysis for prediction model results for running of possible
combinations for X = 8 and X = 11 with the LSTM model; in comparison with the prediction
performance results for our proposed feature learning-based adaptive LSTM approach
(Table 9).

Table 9. Datasets based on contextual feature ranking.

Algorithmic Approach Contextual Features Running Cycles Execution Time (Seconds)

Multivariate LSTM X = 11 2036 581,464.23
Multivariate LSTM X = 8 247 66,066.15

Multivariate LSTM with Feature Learning X = 8 4 1195.27

6.3. Predictive Learning Based Optimal Control Mechanism

In this section, we examine the performance of a predictive learning-based optimal
control mechanism. We perform the comparison analysis between optimal control mecha-
nisms with predictive learning and without predictive learning.

Figure 12 shows the comparisons of the results between predictive learning-based
optimization scheme and nonpredictive learning-based optimization scheme. The y-axis
shows the actuators which are being controlled at the smart home, and x-axis shows the
energy consumption cost for actuator control. The energy consumption cost was measured
in South Korean Won (KRW). In the results, we can clearly see that energy cost was opti-
mized and reduced when a predictive learning-based optimization mechanism was used
compared to the optimization mechanism where no predictive learning was implemented.
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In Figure 13, we present the comparison of average energy consumption for optimal
actuator control with and without predictive learning. In the results, we can observe that
average energy consumption was reduced with predictive learning-based optimization
actuator control., 8, x FOR PEER REVIEW 16 of 18 
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If we observe the above figures, we can see that in every actuator, we were getting
improvement with our proposed predictive learning-based approach. Lights were 2.9%
more cost-efficient, while dehumidifiers and humidifiers showed about 3% improvement
in reducing the cost. Chiller and heater also showed about a 1.4% and 1.6% decrease in the
consumption cost compared to other approaches (i.e., optimizations without predictive
learning). All these comparisons are listed in Figure 12. If we consider total energy
consumption of the whole system, we again see our proposed scheme outperforming the
default setup. Our proposed scheme consumed approximately 3378 kilowatts, while the
default system consumed 3420 kilowatts. This gave us around 2.18% improvement over
the existing system. The calculation is summarized in Figure 13.

7. Conclusions

In this work, we presented a predictive learning-based optimal control mechanism for
actuators deployed in smart environments. At first, we proposed a feature learning-based
smart home energy prediction solution that aims to improve the prediction accuracies
by filtering the contextual data based on history learnings. The algorithms used in the
proposed mechanism were LSTM for energy predictions and ANN-PSO for feature learning
within LSTM cycles. Our proposed prediction model takes all available features at the first
cycle of energy prediction and works its way down to learn the most impactful features.
The proposed model also learns to re-add features based on history learned relevance at
a given prediction time. We used our implemented prediction module to further aid the
optimization of a smart home actuators’ control mechanism. The optimization model per-
formance was enhanced by adding the predictive learning mechanism to it. The integration
of predictive learning with optimal actuator control aims to reduce energy consumption
with less dependency on the user-defined parameters for optimal control.

When analyzing the result, we compared how feature learning can dramatically
increase the prediction model’s performance. It finds the set of best suited contextual
features with very few cycles of learning. The proposed solution can be very effective for
scenarios where the dataset contains large numbers of features. It can help extract the
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most relevant features efficiently. Additionally, in many cases, researchers often work with
datasets where they might not have complete knowledge of the data field. In such cases,
the proposed model can also help researchers with feature learning and save a fair amount
of time.

As the results demonstrate, our proposed system (i.e., predictive learning-based
optimal control mechanism) clearly reduced the whole system’s energy consumption.
Saving energy is of critical importance; hence, the proposed integration can largely benefit
smart homes’ optimal actuator control systems.
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